Non-muscle myosin II induces disassembly of actin stress fibres independently of myosin light chain dephosphorylation.

نویسندگان

  • Tsubasa S Matsui
  • Roland Kaunas
  • Makoto Kanzaki
  • Masaaki Sato
  • Shinji Deguchi
چکیده

Dynamic remodelling of actin stress fibres (SFs) allows non-muscle cells to adapt to applied forces such as uniaxial cell shortening. However, the mechanism underlying rapid and selective disassembly of SFs oriented in the direction of shortening remains to be elucidated. Here, we investigated how myosin crossbridge cycling induced by MgATP is associated with SF disassembly. Moderate concentrations of MgATP, or [MgATP], induced SF contraction. Meanwhile, at [MgATP] slightly higher than the physiological level, periodic actin patterns emerged along the length of SFs and dispersed within seconds. The actin fragments were diverse in length, but comparable to those in characteristic sarcomeric units of SFs. These results suggest that MgATP-bound non-muscle myosin II dissociates from the individual actin filaments that constitute the sarcomeric units, resulting in unbundling-induced disassembly rather than end-to-end actin depolymerization. This rapid SF disassembly occurred independent of dephosphorylation of myosin light chain. In terms of effects on actin-myosin interactions, a rise in [MgATP] is functionally equivalent to a temporal decrease in the total number of actin-myosin crossbridges. Actin-myosin crossbridges are known to be reduced by an assisting load on myosin. Thus, the present study suggests that reducing the number of actin-myosin crossbridges promotes rapid and orientation-dependent disassembly of SFs after cell shortening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of myosin II dynamics by phosphorylation and dephosphorylation of its light chain in epithelial cells.

Nonmuscle myosin II, an actin-based motor protein, plays an essential role in actin cytoskeleton organization and cellular motility. Although phosphorylation of its regulatory light chain (MRLC) is known to be involved in myosin II filament assembly and motor activity in vitro, it remains unclear exactly how MRLC phosphorylation regulates myosin II dynamics in vivo. We established clones of Mad...

متن کامل

Regulation of myosin II dynamics by phosphorylation and dephosphorylation of its regulatory light chain in epithelial cells

Nonmuscle myosin II, an actin-based motor protein, plays an essential role in actin cytoskeleton organization and cellular motility. Although phosphorylation of its regulatory light chain (MRLC) is known to be involved in myosin II filament assembly and motor activity in vitro, it remains unclear exactly how MRLC phosphorylation regulates myosin II dynamics in vivo. We established clones of MDC...

متن کامل

The binding of smooth muscle myosin light chain kinase and phosphatases to actin and myosin.

Contractile activity in smooth muscle cells is regulated by phosphorylation-dephosphorylation of the 20,000-Da light chain of myosin. In an attempt to better understand the localization in muscle of the enzymes which catalyze the phosphorylation-dephosphorylation process, we measured the binding constants of turkey gizzard smooth muscle myosin light chain (MLC) kinase and smooth muscle phosphat...

متن کامل

Protein phosphatase type-1, not type-2A, modulates actin microfilament integrity and myosin light chain phosphorylation in living nonmuscle cells

Dynamic reorganization of the actin microfilament networks is dependent on the reversible phosphorylation of myosin light chain. To assess the potential role of protein phosphatases in this process in living nonmuscle cells, we have microinjected the purified type-1 and type-2A phosphatases into the cytoplasm of mammalian fibroblasts. Our studies reveal that elevating type-1 phosphatase levels ...

متن کامل

Assembly of non-contractile dorsal stress fibers requires a-actinin-1 and Rac1 in migrating and spreading cells

Cell migration and spreading is driven by actin polymerization and actin stress fibers. Actin stress fibers are considered to contain aactinin crosslinkers and nonmuscle myosin II motors. Although several actin stress fiber subtypes have been identified in migrating and spreading cells, the degree of molecular diversity of their composition and the signaling pathways regulating fiber subtypes r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Interface focus

دوره 1 5  شماره 

صفحات  -

تاریخ انتشار 2011